دانشگاه تا کار

ارائه دهنده مقاله، پایان نامه، پروپوزال، پاورپوینت، نمونه سوالات استخدامی در تمامی رشته ها و در مقاطع مختلف

دانشگاه تا کار

ارائه دهنده مقاله، پایان نامه، پروپوزال، پاورپوینت، نمونه سوالات استخدامی در تمامی رشته ها و در مقاطع مختلف

ارائه دهنده انواع مقاله، پایان نامه، پروپوزال، پاورپوینت
نمونه سوال استخدامی، داستان برای کودکان و...
هرآنچه که نیاز دارید

۳۴۳ مطلب با موضوع «علوم پایه» ثبت شده است

فرمت : WORD                                          تعداد صفحه :12

 [ویرایش] پیشینه

از پیشینه این نوع برخورد با قرآن اطلاع چندانی در دست نیست، ولی از آنجا که سیوطی در کتاب الاتقان فی علوم القرآن به این موضوع پرداخته، می‌توان دریافت که این موضوع چندان غریب نبوده. با این حال توجه جدی به این موضوع در دهه هفتاد میلادی، با ادعاهای رشاد خلیفه آغاز شد. او ادعا کرد که نظمی رادر قرآن کشف نموده‌است که ویژگی خاص قرآن بوده و یکی از بزرگترین وجوه اعجاز آن به شمار می‌رود.کشف رابطه ریاضی در قرآن، موجب گردید که برخی از پژوهشگران مسلمان برای کشف اسرار و رموز بیشتری از قرآن به آمارگیری از تعداد حروف و کلمات قرآن بپردازند. برخی از شاگردان یا پیروان رشاد، چون «عبدالله آریک»[۱] با چاپ کتابی، نظریات او را در باب «عدد نوزده» تکمیل نمودند. با اینحال برخی دیگر از اندیشمندان اسلامی نیز بودند که به طرح نظریات جدید ریاضی و مستقل از رشاد پرداختند.پس ازآنکه رشاد خلیفه، نظریاتش را بسط داد، با استفاده از همان نظریه ریاضی، دو آیه آخر از سوره توبه در قرآن را تحریف‌شده و افزوده شده دانست،[۲][۳] و نهایتاً ادعا نمود خداوند او را رسول میثاق نموده است و نام او در قرآن کد شده است. خلیفه همچنین از سایر متون مذهبی در کنار قرآن مثل «سنت پیامبر» و «احادیث» به عنوان منابع جعلی نسبت داده شده به محمد و در تضاد با قرآن، یاد کرد و کشف واقعیت این متون و آموزه‌های جعلی را از وظایف رسالت خویش دانست.[۴] .[۵] این امر موجب شد تا محققین اسلامی شروع به نقد نظریه رشاد و دیگر همکاران و پیروان نظریات او نموده و ادعاهای وی را انکار کنند.[۶]

جدای از درستی یا نادرستی، نظریات ریاضی در حیطه قرآن قابل بررسی و تامل است. بخصوص آنکه در این میان، نظریات دیگری پدید آمدند که اگرچه از دیدگاه ریاضی به قرآن پرداخته‌اند اما کاملاً مستقل از نظریه رشاد و عدد ۱۹ وی بوده‌اند، از آن جمله می‌توان از مهدی بازرگان، نام برد که تاکنون نظریه‌اش مورد تعرض جدی مخالفان واقع نشده‌است.[۷]

[ویرایش] نظریه رشاد خلیفه

در سال ۱۹۷۲(میلادی) میلادی رشاد خلیفه مقاله‌ای منتشر کرد بنام «عدد۱۹، معجزه عددی در قرآن» و پس از آن در کتاب خود[۸] نظریه خود، مبنی بر کشف یک رابطه ریاضی در تعداد سوره‌ها، آیه‌ها، کلمات و حروف کتاب قرآن را رونمایی کرد. او انگیزه خود را اثبات اعجاز و غیر بشری بودن قرآن خواند تا بدین ترتیب اثبات کند که قرآن همانند انجیل نوشته دست بشر نیست و انشای خداوند است.وی ادعا نمود که

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 14:13
fsh

فرمت : WORD                   تعداد صفحه :39

خلاصه

این مقاله به بررسی جنبه‌های مختلف و رو به رشد منطق محاسباتی می‌پردازد. تکنیکها و کاربردهای فعلی آن را مطالعه میکند و در نهایت به یک نتیجه‌گیری و ارایه پیشنهادهایی در مورد منطق محاسباتی می‌پردازد.

 

1- مقدمه

منطق محاسباتی[1] بخشی از منطق است که به بررسی راهکارهای محتلف بررسی درستی احکام در دستگاه‌های مختلف منطقی میپردازد. این رشته به طور عمیقی با علوم کامپیوتر پیوند یافته است و به صورت کلی رشد واقعی آن از وقتی شروع شد که توان محاسباتی کامپیوترها پیشرفت کرد و انجام محاسبات پیچیده بوسیله کامپیوترها با هزینه کم امکان پذیر شد. منطق محاسباتی به صورت کلی به منطق از دید محاسباتی آن مینگرد. این که در یک دستگاه منطقی انجام یک محاسبه (به طور مثال چک کردن درستی یک گزاره) امکان پذیر هست یا نه و اگر امکان پذیر است این کار چه هزینه ای دارد. از آنجا که حقایق علمی ما با منطق پیوند عمیقی دارند، برای بررسی این حقایق استفاده از زبان منطقی، یکی از بهترین راه های ممکن است.

امروزه بشر علاقه زیادی دارد که تمام کارها از جمله فکر کردن را به ماشین واگذار کند. اما واگذار کردن فکر کردن به یک ماشین کار ساده ای نیست. ما دید عمیقی درباره اینکه فکر کردن چیست و چگونه انجام میشود نداریم. ازینرو تلاشهای اولیه برای این کار با شکست مواجه شدند یا با سختی زیادی همراه بودند. اما اگر بخواهیم تنها قسمت منطقی فکر کردن را به ماشین واگذار کنیم کار ساده تر است چون برای این کار از منطق ریاضی استفاده میکنیم و منطق یک زیر شاخه قوی از ریاضی است که به سوالات زیادی در مورد آن جواب داده شده است. گرچه ما هنوز واقعا نمیدانیم که چه مقدار از روند تفکر ما منطقی است. به این مطلب در قسمت نتیجه گیری بیشتر خواهیم پرداخت.

امروزه منطق محاسباتی کاربرد گسترده ای در تکنولوژی پیدا کرده است. بدین ترتیب حجم کارهای انجام شده بر روی آن در حال افزایش است. این کارها نه تنها در زمینه ریاضی بلکه بر روی دیگر ابعاد مربوط به این قضیه نیز انجام میشود. عموما این کارها به سه دسته تقسیم میشوند. دسته اول کارهای مرتبط با پایه ریاضی منطق محاسباتی هستند. دسته دوم کارهای مرتبط با تکنیکهای هوش مصنوعی جهت ارتقای کارایی روشهای ریاضی ابداع شده و دسته سوم کارهای انجام شده جهت استفاده از منطق محاسباتی در مسایل واقعی مهندسی.

 


[1] Computational Logic                                                                                                                                                       

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 14:12
fsh

فرمت : WORD                                          تعداد صفحه :12

اصل لانه کبوتر بسیار روشن است و بسیار ساده به نظر می‌رسد، گویی دارای اهمیت زیادی نیست، ولی در عمل این اصل دارای اهمیت و قدرت بسیار زیادی است، زیرا تعمیمهای آن حاوی نتایجی عمیق در نظریه ترکیباتی و نظریه اعداد است. وقتی می‌گوئیم در هر گروه سه نفری از مردم حداقل دو نفر، هم جنس‌اند در واقع اصل لانه کبوتر را به کار گرفته‌ایم. فرض کنیم به تازگی در دانشکده‌ای، یک گروه علوم کامپیوتر تاسیس یافته که برای 10 عضو هیئت علمی آن فقط 9 دفتر‌کار موجود باشد. آن‌گاه باز هم ایده نهایی در پشت این ادعای بدیهی که حداقل از یک دفتر‌کار بیشتر از یک نفر است استفاده می‌کنند، اصل لانه کبوتر است. اگر به جای 10 نفر 19 عضو هیئت علمی وجود داشته باشد، آن‌گاه حداقل از یک دفتر‌کار بیشتر از دو نفر استفاده می‌کنند. همین‌طور، اگر در دانشکده‌ای حداقل 367 دانشجو وجود داشته باشند، باز آشکار است S حداقل دو نفر از آنها روز تولدشان یکی است. می‌گویند که

ایده اساسی حاکم بر همه‌ی این موارد حقیقت ساده‌ای مشهور به اصل لانه‌کبوتر دیر بلکه است.

که عبارت است از:

فرض کنید ‌k و n دو عدد طبیعی‌اند. اگر بخواهیم بیشتر از nk+1 شی را در n جعبه قرار دهیم، حداقل یک جعبه وجود دارد که در آن حداقل k+1 شی قرار گرفته باشد. در حالت خاص، اگر حداقل n+1 شی را در n جعبه قرار دهیم، جعبه‌ای وجود دارد که در آن حداقل دو شی قرار گرفته باشد.

  1. هفده نفر در جلسه‌ای حضور دارند. آنها درباره سه موضوع بحث می‌کنند، هر دو نفر آنها درباره یک و فقط یک موضوع بحث می‌کنند. ثابت کنید یک گروه حداقل سه نفری وجود دارد که افراد آن با هم راجع به یک موضوع بحث کرده باشند.

حل: می‌توانیم 17 نفر را 17 نقطه در نظر بگیریم که هر دوتایی به توسط یک بال به هم وصل شده‌اند. بالی را که X و Y را به هم متصل می‌کند، آبی می‌کنیم اگر آن دو درباره موضوع (1) بحث کرده باشند و قرمز می‌کنیم اگر راجع به موضوع (2) بحث کرده باشند و به رنگ زرد در می‌آوریم. اگر آن دو درباره موضوع (3) با هم به بحث پرداخته باشند. بنابراین هر کدام از 16 بالی که از A گذشته‌اند با یکی از سه‌رنگ آبی،‌ قرمز یا زرد رنگ شده است. از آن‌جایی که 1+3×5=16، طبق اصل لانه کبوتری حداقل 1+5 رأس یافت می‌شود، که با یک رنگ به A متصل شده باشند. بدون اینکه به کلیت مساله لطمه بخورد فرض می‌‌‌کنیم یال‌‌های AG,AF,AE,AD,AC,AB با رنگ آبی، رنگ‌آمیزی شده باشند. حال 6 رأس G,F,E,D,C,B را در نظر بگیرید که با 15 یال به هم متصل شده‌اند. اگر هر کدام از این یال‌ها (مثلاً BC) به رنگ آبی باشد. آن‌گاه این یال‌ها با رنگ‌های قرمز یا زرد خواهیم داشت. و این به این معنی است که حداقل سه نفر وجود دارند که با هم راجع به یک موضوع بحث کرده باشند.

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 14:12
fsh

«

فرمت : WORD                   تعداد صفحه :36

مقدمه‌ای از معادلات دیفرانسیل معمولی»

یک معادله دیفرانسیل معمولی هست رابطه‌ای بین یک تابع و مشتقل های آن و متغیرهای مستقل که به آنها بستگی دارند، فرم کلی از یک معادله دیفرانسیل معمولی عبارتست از (6.1)   وقتی که تا مشتق مرتبه m ام تابع y موجود باشد، همچنین y و مشتقاتش تابعی از متغیر مستقل t خواهند بود، مرتبه یک معادله دیفرانسیل عبارتست از مرتبه بزرگترین مشتق موجود در آن، و درجه یک معادله دیفرانسیل عبارتست از درجه مشتق از مرتبه بالا که با دیگر مشتقات رابطه دارد.

اگر بین تابع متغیر y(t) با خودش و یا هر یک از مشتقاتش نتوان رابطه‌ی دقیق را بدست آورد. معادله به یک معادله خطی تبدیل می شود، فرم کلی یک معادله دیفرانسیل خطی از مرتبه m عبارتست از (6.2)   که هر کدام از  ها توابع شناخته شده ای هستند:

اگر معادله دیفرانسیل غیر خطی (6.1) از مرتبه m را بتوان به فرم (6.3)   درآورد آن گاه معادله (6.3) نامیده می‌شود یک تابع اولیه از معادله دیفرانسیل (6.1) . به این فرم که بالاترین مرتبه مشتق عبارتست از رابطه‌ای بین مشتقات از مرتبه پایین‌تر و متغیرهای مستقل.

«مسائل مقدار اولیه»

یک راه حل عمومی برای یک معادل دیفرانسیل عادی مانند (6.1) هست یک رابطه‌ای بین y   و t و m مقادیر دلخواه ثابت، که معادله را مورد قبول قرار می‌دهند در حالی که محتوی مشتقات نمی شود. این راه حل شاید یک رابطه ضمنی به فرم (6.4)   یا یک تابع صریح برحسب t به فرم (6.5)   باشد.

این m مقادیر دلخواه ثابت  می تواند تعیین شود بوسیله شرایط m گانه به فرم (6.6)   

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 14:10
fsh

فرمت : WORD                   تعداد صفحه :15

تاریخچه مختصر ریاضیات

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه هایش را می داند انجام می داد اما به زودی مجبور شد وسیله شمارش دقیق تری بوجود آورد لذا به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می باشد قدیمی ترین دستگاه شماری است که آثاری از آن در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده می شود. سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین النهرین یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند. نخستین دانشمند معروف یونانی طالس ملطلی (639- 548 ق. م.) است که در پیدایش علوم نقش مهمی به عهده داشت و می توان وی را موجد علوم فیزیک، نجوم و هندسه دانست. در اوایل قرن ششم ق. م. فیثاغورث (572-500 ق. م.) از اهالی ساموس یونان کم کم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490 ق. م. در ایلیا متولد شده است نام ببریم. در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس قضایای متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسه جدید ما را تشکیل می دهند. در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعد از او نیز همچنان برپا ماند.

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 14:09
fsh

فرمت : WORD                   تعداد صفحه :13

- معادلات فرد هولم

شباهت ها با جبر ماتریسی: سه معادله انتگرال زیر را در نظر بگیرید

                                                          

                                                                      

     

حدود تغییرات انتگرال گیری و تعریف توابع شامل  است. حدود انتگرال گیری را تا لازم نباشند ذکر نمی کنیم. قبل از اینکه جواب، این معادلات را مطرح کنیم بهتر است که تقریب هایی ساده برای آنها بدست آوریم، سپس تقریب ها را مورد بحث قرار دهیم. برای این کار می توانیم ایده ای از خواص معادلات انتگرال را بدست آوریم، هر چند عموماً این خواص را به جای اثبات فقط معین می کنیم. در اینجا فرض می کنیم که معادلات ناتکین هستند.

فرض کنید یک عدد صحیح باشد و q,p اعداد صحیح مثبت کمتر از  باشند. قرار می دهیم: .

با میل  به سمت بی نهایت و h به سمت صفر، به درستی انتظار داریم که تقریب بهتر و بهتر شود.

 

اکنون ، تقریبی برای  است و در نتیجه مجموعه معادلات زیر

(4-2)                                                     

(5-2)                                                             

(6-2)                                                   

به ترتیب تقریب هایی برای معادلات انتگرال (1-2)، (2-2)و(3-2) هستند.

معادلات (4-2)،(5-2)و(6-2) را می توان به ترتیب، به صورت ماتریسی بازنویسی کرد.

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 14:09
fsh

فرمت : WORD                                           تعداد صفحه :27

 

 

مجموعه ی همه ی نتایج ممکن در یک آزمایش تصادفی، فضای نمونه ای نامیده می شود.

نسبت «رو» هایی که در آزمایش پرتاب سکه به دست آمد، همان فراوانی نسبی است.

اگر داده های حاصل از آزمایش در محاسبه ی احتمال مورد استفاده قرار گیرد به احتمال تجربی یا تخمین احتمال گویند.

مثال: از 50 بار پرتاب یک سکه 30 بار رو ظاهر شده است تخمین احتمال رو آمدن سکه کدام است؟

به احتمال هایی که در آن پیشامدها به طور ایده آل رخ می دهند و داده های حاصل از آزمایش در آن نقشی ندارند احتمال نظری گفته می شود و در این حالت نتایج آزمایش هم شانس هستند.

مثال: در پرتاب یک تاس احتمال آمدن عدد بزرگتر از 4 کدام است؟

توضیح بهتر اینکه:‌احتمال نظری به احتمالهایی گفته می شود که به کمک آنچه که به طور ایده آل باید رخ دهد تعیین می گردند و داده های حاصل از آزمایش در آن نقشی نداشته باشند. برای مثال در پرتاب یک سکه فضای نمونه به صورت {پ و ر}=S می باشد که احتمال «رو» آمدن سکه و احتمال «پشت» آمدن سکه نیز است. این دو عدد احتمال نظری می باشند.

همچنین در پرتاب یک تاس فضای نمونه به صورت {6و5و4و3و2و1}=S می باشد که احتمال آمدن عدد3، می باشد، که این عدد احتمال نظری ظاهر شدن عدد3 می باشد.

احتمال تجربی: اگر یک سکه سالم را 100 بار پرتاب کنیم و از این 100 بار 55 بار «رو» ظاهر شود کسر را احتمال تجربی (تخمین احتمال) رو آمدن در این 100 بار آزمایش می گوییم همچنین اگر یک تاس را 30 بار پرتاب کنیم و 5 بار عدد 2 ظاهر شده باشد کسر را احتمال تجربی ظاهر شدن عدد 2 در این 30 بار آزمایش می گوییم

 

ظهور احتمال

اما ظهور احتمال به صورت یک نظریه ریاضی نسبتاً جدید است.

مصریان قدیم در حدود ۳۵۰۰ سال قبل از میلاد برای بازی از چیزی که امروزه آن را "قاپ" می‌نامند و شیئی استخوانی شبیه تاس چهار وجهی است استفاده می‌کردندکه در استخوان زانوی پای بعضی از حیوانات وجود دارد.

تاس شش وجهی معمولی در حدود سالهای ۱۶۰۰ بعد از میلاد ساخته شد و از آن به بعد در تمام انواع بازیها ابزار اصلی بوده است.

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 14:08
fsh

فرمت : WORD                   تعداد صفحه :13

فرض کنید :
- ۱۰۰ نفر آدم با هوش در یک سالن زندانی هستند.
- حداقل یک نفر و حداکثر همه آنها دارای یک خال بر روی صورتشان هستند.
- هیچ کدام از این افراد نمی دانند که آیا خود دارای خال هستند یا نه.
- به آنها گفته شده که به ازای هر آدم خال دار یک شبانه روز ( نه کمتر و نه بیشتر) مهلت دارند که آدم های خال دار از سالن بیرون بیایند.
- این افراد نمی توانند هیچ ارتباطی با افراد دیگر موجود در سالن برقرار کنند.
- تنها ارتباط موجود دیدن صورت افراد دیگر است.
- به هیچ امکانی هم دسترسی ندارند که صورت خود را ببینند.
- خلاصه پیغام و پیام و آینه و .... ممنوع است.
- تعداد افراد خال دار معلوم نیست.
سؤال : با چه روشی ممکن است که فقط افراد خال دار در پایان مهلت تعیین شده (n روز به ازای n خال دار) از سالن خارج شوند؟

جواب - > فرض کنین یه نفر تو قبیله خال داشته باشه. اون فرد خالدار بقیه قبیله رو میبینه که هیچ کس خالدار نیست ولی چون رییس قبیله گفته اینجور افراد حتما وجود دارند، نتیجه میگیره فقط خودش خالداره و همون روز اول خودش رو میکشه. از طرف دیگه بقیه افراد بدون خال میبینن یه نفر خال داره ولی خودشون نمیدونن خال دارن یا نه. مثل بالا برای خودشون استدلال میکنن که اگه خودشون خال نداشته باشن اون فرد خالدار باید امروز خودش رو بکشه و اگر خودشون خال داشته باشن اون فرد دیگه امروز رو منتظر خواهد موند. اون فرد خالدار روز اول خودشو میکشه و بقیه میفهمن که خودشون خالدار نبودن. این از یکی.
حالا برای دو نفر همین استدلال رو تکرار کنین. فرض کنین دو نفر تو قبیله خال دارن. اونی که خالداره میبینه یه نفر تو قبیله خال داره ولی نمیدونه خودش هم خال داره یا نه. با خودش میگه اگه من خال نداشته باشم اون فرد خالدار باید امروز خودش رو بکشه و اگر خال داشته باشم باید منتظر بمونه. اون فرد دیگه هم همین جور استدلال میکنه و هر دوشون روز اول رو کاری نمیکنن و منتظر میمونن. در نتیجه میفهمن که هر دو تا خالدارن و روز دوم خودشون رو میکشن. اما اونایی که خال ندارن میبینن دو نفر تو قبیله خال دارن. اونا دو روز صبر میکنن تا سرنوشت این دو تا معلوم بشه و چون روز دوم اون دو نفر خودشون رو میکشن میفهمن که خودشون خال نداشتن.
به همین ترتیب میتونین برای سه نفر و چهار نفر و ... تکرار کنین استدلال رو. در نتیجه اگه n نفر خالدار باشن تا روز n-1 ام صبر میکنن و بقیه که خال ندارن تا روز n ام. روز n ام افراد خالدار دسته جمعی خودشون رو میکشن و از اینجا بقیه میفهمن که خودشون خال ندارن. یعنی تا صبح روز n+1 فرد خالداری تو قبیله وجود نخواهد داشت. پس تو این قبیله ما 7 نفر خالدار بودن چون تا صبح روز هشتم دیگه فرد خالداری تو قبیله نبوده

 

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 14:07
fsh

فرمت : WORD                   تعداد صفحه :20

-1-مقدمه :

بطورکلی یک مسأله مقدار مرزی بصورت زیر می باشد :

                                                             (1-1)

که در آن L یک عملگر دیفرانسیلی مرتبه m ام ، r یک تابع مفروض و  شرایط مرزی می باشند . فرض کنید x یک متغیر مستقل برای مسأله مقدار مرزی باشد و  شرایط مرزی در دو نقطه (مرزها) باشد بنابراین رابطة
(1-1) را می توانیم به فرم خطی زیر نیز بنویسیم :

    

                (1-2)

برای  ، k تا شرط مرزی مستقل خطی که تنها شامل مشتقات تا مرتبه (q-1)ام می باشند را شرایط مرزی essential (اساسی) می گوئیم . و () شرط باقیمانده را شرایط مرزی Suppressible می نامیم . ساده ترین مسأله مقدار مرزی که با معادلة دیفرانسیل مرتبه دوم می باشد بصورت زیر است : 

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 14:07
fsh

فرمت : WORD                   تعداد صفحه :13

عمرخیام

حکیم ابوالفنح عمرخیام ازبرجسته ترین حکما وریاضی دانان جهان اسلام به شمار می رود. وی درشهرنیشابوردرسال(429 ه ق) دیده به جهان گشود وهمانجا زیست

و درسال(517 ه ق) جان به جان آفرین تسلیم کرد. خیام به قدری در  ریاضیات پیشرفت کرده بود که ازسوی ملکشاه سلجوقی فرا خوانده شد تا تقویم را اصلاح کند. حاصل کاراودراین زمینه تقویم جلالی است که هنوزاعتبار و رواج دارد واز تقویم گریگوریایی دقیق تراست.

او دوازده کتاب ازخود به جا گذاشته که مهمترین آنها کتاب جبراست. درزمان ما دکتر غلامحسین مصاحب ریاضی دان ایرانی با تالیف کتاب حکیم عمرخیام به عنوان عالم جبر برای نخستین بارمقام علمی عمرخیام را درریاضیات به طور مستقل به فارسی زبانان شناساند.    

 

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 13:50
fsh

فرمت : WORD                   تعداد صفحه :6

برای اولین بار خوارزمی این مسئله را به صورت زیر مطرح کرد:

ابتدا یک درم را بین تعدادی مرد تقسیم کرده ایم.

یک مرد دیگر به تعداد نفرات اضافه شد، مجبور شدیم دوباره یک درم را بین افراد حاضر تقسیم کنیم؛ پس از تقسیم، به هر نفر از مردها، 6/1 کمتر از بار اول رسیده است. حال این سؤال توسط خوارزمی مطرح شد که تعداد مردان در تقسیم اول چند نفر بوده است؟ 

فرمولبندی مسئله:

  بنا به فرض مسئله؛ اگر x را تعداد مردان در تقسیم اول در نظر بگیریم، به هر مرد 1/x درم می رسید. در صورتی که در تقسیم دوم به هر نفر 1/(x+1) درم می رسد. بنابراین، معادله ی مسئله ی خوارزمی به صورت زیر می باشد (چرا؟):

http://img.tebyan.net/small/1388/08/20091114171354216_1-3.jpg

 

خوارزمی می گوید، معنای مسئله این است که باید تعداد مجذور مردان به اضافه تعداد آن ها، برابر 6 شود (چرا؟):

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 13:49
fsh

فرمت : WORD                   تعداد صفحه :40

METHODS

«روش‌های تفاضل متناهی»

روابط واضح یا غیرواضح بین مشتقات و مقادیر توابع در نقاط آغازی وجود دارد.

نقاط آغازی بر روی  [a,b] می تواند به وسیله [j= 1,2,…,N] و xj= a+jh به طوریکه  ،  ،  در نظر گرفته شود.

این عبارت برای مشتقات تحت شرایط مقادیر تابعی است.

جواب مسأله مقدار مرزی یک  تفاضل متناهی بوسیله جای‌گذاری معادله دیفرانسیل در هر نقطه آغازین به وسیله یک معادله تفاضلی بدست می آید.

با در نظر گرفتن شرایط مرزی در معادلات تفاضلی، سیستم جبری معادلات مورد حصول حل می شود، این یک جواب عددی تخمینی برای مسأله مقدار مرزی بدست می دهد.

- Linear Second Order Differential Equations

 

[معادلات دیفرانسیل خطی مرتبه دوم]   ‍[صفحه 5, 4 ]

به معادله دیفرانسیل مرتبه دوم زیر توجه می کنیم:  

 ،       (46)

در رابطه با شرایط مرزی نوع اول:  ،     (47)

مقدار قطعی u(m) از  با  مشخص شده و مقدار تقریبی آن با  ، با استفاده از سریهای تیلورها می توانیم مشخص کنیم که: 

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 13:48
fsh

فرمت : WORD                   تعداد صفحه :38

مقدمه

مدلها و استراتژی ماتریس

ارزیابی عملکرد

مدل سینک و تاتل (1989)

ماتریس عملکرد (1989)

مدل نتایج و تعیین کننده ها (1991)

هرم عملکرد (1991)

کارت امتیازدهی متوازن (1992)

مدل ماتریس استراتژی اصلی

مدل ماتریس پورت فولیو

ویژگیهای ماتریس های پورت فولیو

ماتریس داخلی و خارجی

مدل گروه مشاوره ای بوستون 4(ماتریس BCG )

مدل شرکت جنرال الکتریک (GE):

ماتریس تهدیدات، فرصت ها، نقاط قوت و نقاط ضعف( SWOT)

ماتریس داخلی و خارجی (IE) (4)

ماتریس ارزیابی موقعیت و اقدام استراتژیک (Space)11

ماتریس داخلی و خارجی ( IE )

ماتریس BCG و GE

ماتریـس کاتـلر و آنسـوف

 

 

 

 

 

 

 

 

 

 

 

 

 

مقدمه

فقدان ساختار علمی در انتقال استراتژی‌های تدوین شده به سطوح تصمیم‌گیری پایین سازمان، باعث بروز مسائلی در بخش صنایع تولیدی می‌شود. ادبیات استراتژی‌های آکادمیک، بیانگر مفاهیم و روش‌های تدوین استراتژی‌ها از دیدگاه بازار است، در حالی که بین تدوین استراتژی‌ها و اجرای آنها، اغلب شکافی آشکار بروز می‌کند. هدف مقاله حاضر، ارائه نوعی مدل تصمیم‌گیری است که بین مفاهیم استراتژی‌های تولیدی و تصمیم‌گیری‌های استراتژیک، مطابق با اصول جریان سیستم‌های تولیدی، ارتباط برقرار کند. نتیجه مقاله، بیانگر انتقال استراتژی‌ها از سطوح تصمیمات استراتژیک به سطوح تصمیم‌گیری براساس اصول جریان زیرسیستم‌هاست.

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 13:39
fsh

فرمت : WORD                   تعداد صفحه :23

مقدمه:

حل مسئله از دو جنبه اهمیت دارد. اول آن که از اهداف مهارتی مهم در آموزش ریاضیات است و از طرف دیگر     می توان گفت انجام هر فعالیت با پاسخ دادن به سؤال ها و یا تمرین های ریاضی (که ممکن است به منظور تقویت مهارتی طرح شده باشد.) به نوعی حل مسئله است. با این تعریف حل مسئله چتری است که بر روی تمام اهداف مهارتی و به تعبیری دیگر بر تمام آموزش ریاضی قرار می گیرد.

در استانداردهای آموزش ریاضی این گونه بیان شده است، حل مسئله قلب تپیده یا نقطه ی تمرکز آموزش ریاضی است.

مسئله را می توان به زبان ساده تعریف کرد. هرگاه فردی بخواهد کار دیگری انجام دهد یا جای دیگری باشد، ولی نتواند به هدف خود برسد، مسئله ایجاد می شود. حل مسئله، نوعی از یادگیری بسیار پیچیده است. مسئله و تلاش برای حل آن جزیی از زندگی هر فرد است. تعلیم و تربیت باید دانش آموزان را برای برخورد با زندگی آینده آماده کند. فرآیند برخورد با شرایط زندگی را حل مسئله می نامند.

در آموزش ریاضی دو دیدگاه و یا رویکرد کلی در مورد حل مسئله وجود دارد.

1- ریاضی را آموزش می دهیم تا به کمک آن دانش آموزان مسئله حل کنند.

2- آموزش ریاضی را از طریق حل مسئله انجام دهیم.

در نگاه اول حل مسئله در پایان فرآیند آموزش قرار می گیرد.

کتاب های ریاضی دوره ی ابتدایی و راهنمایی فعلی نیز با همین دیدگاه برنامه ریزی شده است . لذا ابتدا مفاهم آموزش داده می شوند سپس تکنیک ها و قواعد بین بیان شده پس از کسب مهارت در انجام تکنیک ها، تعدادی مسئله مطرح می شوند تا دانش آموزان باتوجه به دانش ریاضی خود به آن پاسخ دهند. 

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 13:38
fsh

فرمت : WORD                   تعداد صفحه :38

مجموعه های فازی درواقع تعمیمی برتئوری مجموعه های قراردادیمی باشد که درسال 1965 به عنوان روشی ریاضی برای روشن کردن ابهامات درزندگی روزمره توسط زادهمعرفی شد. [1].

ایده اصلی مجموعه های فازی ساده است وبه راحتی می توان آن را دریافت. فرض کنید هنگامی که به چراغ قرمز می رسید باید توصیه ای به یک دانش آموز راننده درباره زمان ترمز کردن بکنید. شما می گویید « در74 فوتی چهارراه ترمزکن » یا توصیه ی شما شبیه به این است « خیلی زود از ترمزها استفاده کن »؟ البته دومی ؛ دستورالعمل اول برای انجام دادن بسیار دقیق است. این نشان می دهد که دقت می تواند بی فایده باشد ، تا زمانی که راه های مبهم وغیر دقیق می توانند تفسیر وانجام گیرند. زبان روزمره مثال دیگری است از استفاده وانتشار ابهامات. بچه ها بسرعت تفسیر وانجام دستورالعمل های فازی را یاد می گیرند. (ساعت 10 به رختخواب برو). همه ما اطلاعات فازی نتایج مبهم واطلاعات غیر دقیق را به خاطر می سپاریم وازآن ها استفاده می کنیم وبه خاطر همین مسئله قادر هستیم تا در موقعیت‌هایی که به یک عنصر تصادفی وابسته است تصمیم گیری کنیم. بنابراین مدل های محاسباتی از سیستم‌های حقیقی باید قادر باشند که عدم قطعیت های آماری وفازی را تشخیص دهند ، مشخص کنند ، تحت کنترل خود درآورند ، تفسیر کنند وازآن استفاده کنند.

تفسیر فازی ازاطلاعات یک راه بسیار طبیعی ، مستقیم و خوش‌ظاهر برای فرموله کردن وحل مسائل مختلف است. مجموعه های قراردادی شامل اشیایی است که برای عضویت در ویژگی‌های دقیقی صدق می کنند. مجموعه H که اعداد از6 تا 8 می باشد یک CRISP است ؛ ما می نویسیم   . به طور مشابه H توسط تابع عضویت (MF)[3]  که مطابق زیرتعریف می شود نیز توصیف می گردد.

 


[1]-Conventional

[2]-Zade

[3]-Membership Function

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 13:38
fsh


آزمایشگاه سنگ و فسیل شناسی

آزمایشگاه-سنگ-و-فسیل-شناسیدانلود تحقیق آزمایشگاه سنگ و فسیل شناسینوع فایل : Word تعداد صفحات : 18فهرست محتوا نقشه های زمین شناسی 1مقیاس نقشه 1توقف اول: منطقة پورکان 3توقف دوم: منطقة پایین سد 6توقف سوم: منطقة سد کرج یا سد امیرکبیر 7توقف چهارم: منط...دانلود فایل

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 13:00
fsh


شبکه ها و تطابق در گراف

شبکه-ها-و-تطابق-در-گرافدانلود تحقیق رشته ریاضی کاربردی با موضوع شبکه ها و تطابق در گرافنوع فایل : Word تعداد صفحات : 49رشته ریاضی کاربردیشبکه ها و تطابق در گراففهرست مطالبمقدمه فصل 1 شبکه ها 1-1 شارش ها 1-2 برش ها 1-3 قضیه ...دانلود فایل

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 12:36
fsh


پاورپوینت مباحثی در خصوص عوامل زیان آورشیمیایی محیط کار

پاورپوینت-مباحثی-در-خصوص-عوامل-زیان-آورشیمیایی-محیط-کاردانلود پاورپوینت مباحثی در خصوص عوامل زیان آورشیمیایی محیط کار11 اسلایدفهرست1 - ارزیابی جامع میزان مواجهه با عوامل شیمیائی2- اثرات بهداشتی کرم3- فسفر ، سلنیوم و نقره4- فرم آلدهید5-کار ایمن با حلالها6- بررسی کربن دی سولفید 7- اصول ایمن...دانلود فایل

۰ نظر موافقین ۰ مخالفین ۰ 31 December 16 ، 06:08
fsh


مبحث تکامل در زیست شناسی

مبحث-تکامل-در-زیست-شناسیدانلود مقاله مبحث تکامل در زیست شناسینوع فایل : Word تعداد صفحات : 21فهرست و پیشگفتارمقدمه بیش از یکصد سال است که آموزش مبحث تکامل بحث انگیزترین مبحث آموزش زیست شناسی بوده است افرادی در جوامع پیش رفته به جرم آموزش د...دانلود فایل

۰ نظر موافقین ۰ مخالفین ۰ 30 December 16 ، 11:18
fsh


پاورپوینت گیاهان آپارتمانی

پاورپوینت-گیاهان-آپارتمانیمعرفی و ویژگی های انواع گیاهان اپارتمانیدانلود فایل

۰ نظر موافقین ۰ مخالفین ۰ 27 December 16 ، 06:08
fsh