میدان گالو
فرمت : WORD تعداد صفحه :15
ثابت میشود برای هر عدد اول p و هر عدد صحیح میدانی خواهیم داشت از مرتبه pm را بصورت GF(pm) نمایش داده میشود. این میدان برای هرچند جملهای مولد
یکتا است.
در واقع GF(pm) یک بردار m بعدی است روی GF(p). هرمجموعه mتایی که نسبت به هم بطورخطی مستقل باشند را میتوان به عنوان پایههای GF(pm) در نظر گرفت. مثلاً اگر a ریشة چندجملهای ساده نشدنی مولد باشد مجموعه
یک پایه برای GF(pm) خواهد بود.
پایههای مکمل (Complementary Basis):
پایههای و
را روی GF(pm) در نظر بگیرید. درپایه فوق مکمل یا ارگان (dual) یکدیگر خواهند بود اگر:
که در آن
بعد از این تعریف به پایههای نرمال (Normal Basis)NB میرسیم. قبل از تعریف انواع NB ذکر قضیه Davenport ضروری بنظر میرسد:
هر میدان گالوا GF(pm) شامل یک عنصر اصلی است که
یک NB روی آن میباشد. بنابراین قضیه مشخص شد که اولاً هر میدان گالوا GF(pm) دارای حداقل یک NB خواهد بود و ثانیاً یک NB بفرم
میباشد. [1]
حال به تعریف دو نوع از NB میپردازیم.
در عمل بیشتر از دو نوع NB استفاده میکنیم: